Documentação
============
.. raw:: html
.. raw:: html
.. code:: python
from mxnet import np
print(dir(np.random))
.. parsed-literal::
:class: output
['__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__', '_mx_nd_np', 'beta', 'chisquare', 'choice', 'exponential', 'gamma', 'gumbel', 'logistic', 'lognormal', 'multinomial', 'multivariate_normal', 'normal', 'pareto', 'power', 'rand', 'randint', 'randn', 'rayleigh', 'shuffle', 'uniform', 'weibull']
.. raw:: html
.. raw:: html
.. code:: python
import torch
print(dir(torch.distributions))
.. parsed-literal::
:class: output
['AbsTransform', 'AffineTransform', 'Bernoulli', 'Beta', 'Binomial', 'CatTransform', 'Categorical', 'Cauchy', 'Chi2', 'ComposeTransform', 'ContinuousBernoulli', 'CorrCholeskyTransform', 'Dirichlet', 'Distribution', 'ExpTransform', 'Exponential', 'ExponentialFamily', 'FisherSnedecor', 'Gamma', 'Geometric', 'Gumbel', 'HalfCauchy', 'HalfNormal', 'Independent', 'IndependentTransform', 'Kumaraswamy', 'LKJCholesky', 'Laplace', 'LogNormal', 'LogisticNormal', 'LowRankMultivariateNormal', 'LowerCholeskyTransform', 'MixtureSameFamily', 'Multinomial', 'MultivariateNormal', 'NegativeBinomial', 'Normal', 'OneHotCategorical', 'OneHotCategoricalStraightThrough', 'Pareto', 'Poisson', 'PowerTransform', 'RelaxedBernoulli', 'RelaxedOneHotCategorical', 'ReshapeTransform', 'SigmoidTransform', 'SoftmaxTransform', 'StackTransform', 'StickBreakingTransform', 'StudentT', 'TanhTransform', 'Transform', 'TransformedDistribution', 'Uniform', 'VonMises', 'Weibull', '__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', 'bernoulli', 'beta', 'biject_to', 'binomial', 'categorical', 'cauchy', 'chi2', 'constraint_registry', 'constraints', 'continuous_bernoulli', 'dirichlet', 'distribution', 'exp_family', 'exponential', 'fishersnedecor', 'gamma', 'geometric', 'gumbel', 'half_cauchy', 'half_normal', 'identity_transform', 'independent', 'kl', 'kl_divergence', 'kumaraswamy', 'laplace', 'lkj_cholesky', 'log_normal', 'logistic_normal', 'lowrank_multivariate_normal', 'mixture_same_family', 'multinomial', 'multivariate_normal', 'negative_binomial', 'normal', 'one_hot_categorical', 'pareto', 'poisson', 'register_kl', 'relaxed_bernoulli', 'relaxed_categorical', 'studentT', 'transform_to', 'transformed_distribution', 'transforms', 'uniform', 'utils', 'von_mises', 'weibull']
.. raw:: html
.. raw:: html
.. code:: python
import tensorflow as tf
print(dir(tf.random))
.. parsed-literal::
:class: output
['Algorithm', 'Generator', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', '_sys', 'all_candidate_sampler', 'categorical', 'create_rng_state', 'experimental', 'fixed_unigram_candidate_sampler', 'gamma', 'get_global_generator', 'learned_unigram_candidate_sampler', 'log_uniform_candidate_sampler', 'normal', 'poisson', 'set_global_generator', 'set_seed', 'shuffle', 'stateless_binomial', 'stateless_categorical', 'stateless_gamma', 'stateless_normal', 'stateless_parameterized_truncated_normal', 'stateless_poisson', 'stateless_truncated_normal', 'stateless_uniform', 'truncated_normal', 'uniform', 'uniform_candidate_sampler']
.. raw:: html
.. raw:: html
Geralmente, podemos ignorar funções que começam e terminam com ``__``
(objetos especiais em Python) ou funções que começam com um único ``_``
(normalmente funções internas). Com base nos nomes de funções ou
atributos restantes, podemos arriscar um palpite de que este módulo
oferece vários métodos para gerar números aleatórios, incluindo
amostragem da distribuição uniforme (``uniforme``), distribuição normal
(``normal``) e distribuição multinomial (``multinomial``).
Buscando o Uso de Funções e Classes Específicas
-----------------------------------------------
Para obter instruções mais específicas sobre como usar uma determinada
função ou classe, podemos invocar a função ``help``. Como um exemplo,
vamos explorar as instruções de uso para a função ``ones`` dos tensores.
.. raw:: html
.. raw:: html
.. code:: python
help(np.ones)
.. parsed-literal::
:class: output
Help on function ones in module mxnet.numpy:
ones(shape, dtype=, order='C', ctx=None)
Return a new array of given shape and type, filled with ones.
This function currently only supports storing multi-dimensional data
in row-major (C-style).
Parameters
----------
shape : int or tuple of int
The shape of the empty array.
dtype : str or numpy.dtype, optional
An optional value type. Default is `numpy.float32`. Note that this
behavior is different from NumPy's `ones` function where `float64`
is the default value, because `float32` is considered as the default
data type in deep learning.
order : {'C'}, optional, default: 'C'
How to store multi-dimensional data in memory, currently only row-major
(C-style) is supported.
ctx : Context, optional
An optional device context (default is the current default context).
Returns
-------
out : ndarray
Array of ones with the given shape, dtype, and ctx.
Examples
--------
>>> np.ones(5)
array([1., 1., 1., 1., 1.])
>>> np.ones((5,), dtype=int)
array([1, 1, 1, 1, 1], dtype=int64)
>>> np.ones((2, 1))
array([[1.],
[1.]])
>>> s = (2,2)
>>> np.ones(s)
array([[1., 1.],
[1., 1.]])
.. raw:: html
.. raw:: html
.. code:: python
help(torch.ones)
.. parsed-literal::
:class: output
Help on built-in function ones:
ones(...)
ones(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
Returns a tensor filled with the scalar value `1`, with the shape defined
by the variable argument :attr:`size`.
Args:
size (int...): a sequence of integers defining the shape of the output tensor.
Can be a variable number of arguments or a collection like a list or tuple.
Keyword arguments:
out (Tensor, optional): the output tensor.
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
Default: if ``None``, uses a global default (see :func:`torch.set_default_tensor_type`).
layout (:class:`torch.layout`, optional): the desired layout of returned Tensor.
Default: ``torch.strided``.
device (:class:`torch.device`, optional): the desired device of returned tensor.
Default: if ``None``, uses the current device for the default tensor type
(see :func:`torch.set_default_tensor_type`). :attr:`device` will be the CPU
for CPU tensor types and the current CUDA device for CUDA tensor types.
requires_grad (bool, optional): If autograd should record operations on the
returned tensor. Default: ``False``.
Example::
>>> torch.ones(2, 3)
tensor([[ 1., 1., 1.],
[ 1., 1., 1.]])
>>> torch.ones(5)
tensor([ 1., 1., 1., 1., 1.])
.. raw:: html
.. raw:: html
.. code:: python
help(tf.ones)
.. parsed-literal::
:class: output
Help on function ones in module tensorflow.python.ops.array_ops:
ones(shape, dtype=tf.float32, name=None)
Creates a tensor with all elements set to one (1).
See also `tf.ones_like`, `tf.zeros`, `tf.fill`, `tf.eye`.
This operation returns a tensor of type `dtype` with shape `shape` and
all elements set to one.
>>> tf.ones([3, 4], tf.int32)
Args:
shape: A `list` of integers, a `tuple` of integers, or
a 1-D `Tensor` of type `int32`.
dtype: Optional DType of an element in the resulting `Tensor`. Default is
`tf.float32`.
name: Optional string. A name for the operation.
Returns:
A `Tensor` with all elements set to one (1).
.. raw:: html
.. raw:: html
A partir da documentação, podemos ver que a função ``ones`` cria um novo
tensor com a forma especificada e define todos os elementos com o valor
de 1. Sempre que possível, você deve executar um teste rápido para
confirmar seu interpretação:
.. raw:: html