Source code for mxnet.numpy.random
Open the notebook in Colab
Open the notebook in Colab
Open the notebook in Colab

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

"""Namespace for ops used in imperative programming."""

from ..ndarray import numpy as _mx_nd_np


__all__ = ["randint", "uniform", "normal", "choice", "rand", "multinomial", "multivariate_normal",
           "logistic", "gumbel",
           "shuffle", "randn", "gamma", "beta", "chisquare", "exponential", "lognormal",
           "weibull", "pareto", "power", "rayleigh"]


def randint(low, high=None, size=None, dtype=None, ctx=None, out=None):
    r"""Return random integers from `low` (inclusive) to `high` (exclusive).

    Return random integers from the "discrete uniform" distribution of
    the specified dtype in the "half-open" interval [`low`, `high`). If
    `high` is None (the default), then results are from [0, `low`).

    Parameters
    ----------
    low : int
        Lowest (signed) integer to be drawn from the distribution (unless
        ``high=None``, in which case this parameter is one above the
        *highest* such integer).
    high : int, optional
        If provided, one above the largest (signed) integer to be drawn
        from the distribution (see above for behavior if ``high=None``).
    size : int or tuple of ints, optional
        Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
        ``m * n * k`` samples are drawn.  Default is None, in which case a
        single value is returned.
    dtype : dtype, optional
        Desired dtype of the result. All dtypes are determined by their
        name, i.e., 'int64', 'int', etc, so byteorder is not available
        and a specific precision may have different C types depending
        on the platform. The default value is 'np.int'.
    ctx : Context, optional
        Device context of output. Default is current context.
    out : ndarray, optional
        The output ndarray (default is `None`).

    Returns
    -------
    out : ndarray of ints
        `size`-shaped array of random integers from the appropriate
        distribution, or a single such random int if `size` not provided.

    Examples
    --------
    >>> np.random.randint(2, size=10)
    array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])
    >>> np.random.randint(1, size=10)
    array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

    Generate a 2 x 4 array of ints between 0 and 4, inclusive:

    >>> np.random.randint(5, size=(2, 4))
    array([[4, 0, 2, 1],
        [3, 2, 2, 0]])
    """
    return _mx_nd_np.random.randint(low, high, size, dtype, ctx, out)


def uniform(low=0.0, high=1.0, size=None, dtype=None, ctx=None, out=None):
    r"""Draw samples from a uniform distribution.

    Samples are uniformly distributed over the half-open interval
    ``[low, high)`` (includes low, but excludes high).  In other words,
    any value within the given interval is equally likely to be drawn
    by `uniform`.

    Parameters
    ----------
    low : float, ndarray, optional
        Lower boundary of the output interval.  All values generated will be
        greater than or equal to low.  The default value is 0.
    high : float, ndarray, optional
        Upper boundary of the output interval.  All values generated will be
        less than high.  The default value is 1.0.
    size : int or tuple of ints, optional
        Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
        ``m * n * k`` samples are drawn.  If size is ``None`` (default),
        a scalar tensor containing a single value is returned if
        ``low`` and ``high`` are both scalars. Otherwise,
        ``np.broadcast(low, high).size`` samples are drawn.
    dtype : {'float16', 'float32', 'float64'}, optional
        Data type of output samples. Default is 'float32'
    ctx : Context, optional
        Device context of output. Default is current context.

    Returns
    -------
    out : ndarray
        Drawn samples from the parameterized uniform distribution.

    See Also
    --------
    randint : Discrete uniform distribution, yielding integers.
    rand : Convenience function that accepts dimensions as input, e.g.,
           ``rand(2,2)`` would generate a 2-by-2 array of floats,
           uniformly distributed over ``[0, 1)``.

    Notes
    -----
    The probability density function of the uniform distribution is

    .. math:: p(x) = \frac{1}{b - a}

    anywhere within the interval ``[a, b)``, and zero elsewhere.

    When ``high`` == ``low``, values of ``low`` will be returned.
    If ``high`` < ``low``, the results are officially undefined
    and may eventually raise an error, i.e. do not rely on this
    function to behave when passed arguments satisfying that
    inequality condition.
    """
    return _mx_nd_np.random.uniform(low, high, size=size, ctx=ctx, dtype=dtype, out=out)


[docs]def normal(loc=0.0, scale=1.0, size=None, dtype=None, ctx=None, out=None): r"""Draw random samples from a normal (Gaussian) distribution. Samples are distributed according to a normal distribution parametrized by *loc* (mean) and *scale* (standard deviation). Parameters ---------- loc : float, optional Mean (centre) of the distribution. scale : float, optional Standard deviation (spread or "width") of the distribution. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., `(m, n, k)`, then `m * n * k` samples are drawn. If size is `None` (default), a scalar tensor containing a single value is returned if loc and scale are both scalars. Otherwise, ``np.broadcast(low, high).size`` samples are drawn. dtype : {'float16', 'float32', 'float64'}, optional Data type of output samples. Default is 'float32' ctx : Context, optional Device context of output, default is current context. out : ``ndarray``, optional Store output to an existing ``ndarray``. Returns ------- out : ndarray Drawn samples from the parameterized normal distribution. Notes ----- The probability density for the Gaussian distribution is .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }} e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} }, where :math:`\mu` is the mean and :math:`\sigma` the standard deviation. The square of the standard deviation, :math:`\sigma^2`, is called the variance. The function has its peak at the mean, and its "spread" increases with the standard deviation (the function reaches 0.607 times its maximum at :math:`x + \sigma` and :math:`x - \sigma` [2]_). This implies that `numpy.random.normal` is more likely to return samples lying close to the mean, rather than those far away. References ---------- .. [1] Wikipedia, "Normal distribution", https://en.wikipedia.org/wiki/Normal_distribution .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability, Random Variables and Random Signal Principles", 4th ed., 2001, pp. 51, 51, 125. Examples -------- >>> mu, sigma = 0, 0.1 # mean and standard deviation >>> s = np.random.normal(mu, sigma, 1000) Verify the mean and the variance: >>> np.abs(mu - np.mean(s)) < 0.01 array(True) """ return _mx_nd_np.random.normal(loc, scale, size, dtype, ctx, out)
def lognormal(mean=0.0, sigma=1.0, size=None, dtype=None, ctx=None, out=None): r"""Draw samples from a log-normal distribution. Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape. Note that the mean and standard deviation are not the values for the distribution itself, but of the underlying normal distribution it is derived from. Parameters ---------- mean : float or array_like of floats, optional Mean value of the underlying normal distribution. Default is 0. sigma : float or array_like of floats, optional Standard deviation of the underlying normal distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``sigma`` are both scalars. Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn. dtype : {'float16', 'float32', 'float64'}, optional Data type of output samples. Default is 'float32' ctx : Context, optional Device context of output. Default is current context. out : ``ndarray``, optional Store output to an existing ``ndarray``. Returns ------- out : ndarray or scalar Drawn samples from the parameterized log-normal distribution. Notes ----- A variable `x` has a log-normal distribution if `log(x)` is normally distributed. The probability density function for the log-normal distribution is: .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})} where :math:`\mu` is the mean and :math:`\sigma` is the standard deviation of the normally distributed logarithm of the variable. A log-normal distribution results if a random variable is the *product* of a large number of independent, identically-distributed variables in the same way that a normal distribution results if the variable is the *sum* of a large number of independent, identically-distributed variables. References ---------- .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal Distributions across the Sciences: Keys and Clues," BioScience, Vol. 51, No. 5, May, 2001. https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme Values," Basel: Birkhauser Verlag, 2001, pp. 31-32. Examples -------- Draw samples from the distribution: >>> mu, sigma = 3., 1. # mean and standard deviation >>> s = np.random.lognormal(mu, sigma, 1000) """ return _mx_nd_np.random.lognormal(mean, sigma, size, dtype, ctx, out) def logistic(loc=0.0, scale=1.0, size=None, ctx=None, out=None): r"""Draw samples from a logistic distribution. Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also median), and scale (>0). Parameters ---------- loc : float or array_like of floats, optional Parameter of the distribution. Default is 0. scale : float or array_like of floats, optional Parameter of the distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. ctx : Context, optional Device context of output, default is current context. out : ``ndarray``, optional Store output to an existing ``ndarray``. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logistic distribution. Examples -------- Draw samples from the distribution: >>> loc, scale = 10, 1 >>> s = np.random.logistic(loc, scale, 10000) >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, bins=50) # plot against distribution >>> def logist(x, loc, scale): ... return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2) >>> lgst_val = logist(bins, loc, scale) >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max()) >>> plt.show() """ return _mx_nd_np.random.logistic(loc, scale, size, ctx, out) def gumbel(loc=0.0, scale=1.0, size=None, ctx=None, out=None): r"""Draw samples from a Gumbel distribution. Draw samples from a Gumbel distribution with specified location and scale. Parameters ---------- loc : float or array_like of floats, optional The location of the mode of the distribution. Default is 0. scale : float or array_like of floats, optional The scale parameter of the distribution. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. ctx : Context, optional Device context of output, default is current context. out : ``ndarray``, optional Store output to an existing ``ndarray``. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Gumbel distribution. Examples -------- Draw samples from the distribution: >>> mu, beta = 0, 0.1 # location and scale >>> s = np.random.gumbel(mu, beta, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp( -np.exp( -(bins - mu) /beta) ), ... linewidth=2, color='r') >>> plt.show() Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian: >>> means = [] >>> maxima = [] >>> for i in range(0,1000) : ... a = np.random.normal(mu, beta, 1000) ... means.append(a.mean()) ... maxima.append(a.max()) >>> count, bins, ignored = plt.hist(maxima, 30, density=True) >>> beta = np.std(maxima) * np.sqrt(6) / np.pi >>> mu = np.mean(maxima) - 0.57721*beta >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp(-np.exp(-(bins - mu)/beta)), ... linewidth=2, color='r') >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi)) ... * np.exp(-(bins - mu)**2 / (2 * beta**2)), ... linewidth=2, color='g') >>> plt.show() """ return _mx_nd_np.random.gumbel(loc, scale, size, ctx, out) def multinomial(n, pvals, size=None, **kwargs): r""" Draw samples from a multinomial distribution. The multinomial distribution is a multivariate generalisation of the binomial distribution. Take an experiment with one of ``p`` possible outcomes. An example of such an experiment is throwing a dice, where the outcome can be 1 through 6. Each sample drawn from the distribution represents n such experiments. Its values, ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the outcome was ``i``. Parameters ---------- n : int Number of experiments. pvals : sequence of floats, length p Probabilities of each of the p different outcomes. These should sum to 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : ndarray The drawn samples, of shape size, if that was provided. If not, the shape is ``(N,)``. In other words, each entry ``out[i,j,...,:]`` is an N-dimensional value drawn from the distribution. Examples -------- Throw a dice 1000 times, and 1000 times again: >>> np.random.multinomial(1000, [1/6.]*6, size=2) array([[164, 161, 179, 158, 150, 188], [178, 162, 177, 143, 163, 177]]) A loaded die is more likely to land on number 6: >>> np.random.multinomial(100, [1/7.]*5 + [2/7.]) array([19, 14, 12, 11, 21, 23]) >>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3]) array([32, 68]) """ return _mx_nd_np.random.multinomial(n, pvals, size, **kwargs) # pylint: disable=unused-argument def multivariate_normal(mean, cov, size=None, check_valid=None, tol=None): """ multivariate_normal(mean, cov, size=None, check_valid=None, tol=None) Draw random samples from a multivariate normal distribution. The multivariate normal, multinormal or Gaussian distribution is a generalization of the one-dimensional normal distribution to higher dimensions. Such a distribution is specified by its mean and covariance matrix. These parameters are analogous to the mean (average or "center") and variance (standard deviation, or "width," squared) of the one-dimensional normal distribution. This operator is a little different from the one in official NumPy. The official NumPy operator only accepts 1-D ndarray as mean and 2-D ndarray as cov, whereas the operator in DeepNumPy supports batch operation and auto-broadcasting. Both `mean` and `cov` may have any number of leading dimensions, which correspond to a batch shape. They are not necessarily assumed to have the same batch shape, just ones which can be broadcasted. Parameters ---------- mean : K-D ndarray, of shape (..., N) Mean of the N-dimensional distribution. cov : (K+1)-D ndarray, of shape (..., N, N) Covariance matrix of the distribution. The last two dimensions must be symmetric and positive-semidefinite for proper sampling. size : int or tuple of ints, optional Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` identically distributed batchs of samples are generated, and packed in an `m`-by-`n`-by-`k` arrangement. If no shape is specified, a batch of (`N`-D) sample is returned. check_valid : { 'warn', 'raise', 'ignore' }, optional Behavior when the covariance matrix is not positive semidefinite. (Not supported) tol : float, optional Tolerance when checking the singular values in covariance matrix. cov is cast to double before the check. (Not supported) Returns ------- out : ndarray The input shape of `mean` and `cov` should satisfy the requirements of broadcasting. If the parameter `size` is not provided, the output shape is ``np.broadcast(mean.shape, cov.shape[:-1])``. Otherwise, the output shape is ``size + np.broadcast(mean.shape, cov.shape[:-1])`` Examples -------- >>> mean = np.array([1, 2]) >>> cov = np.array([[1, 0], [0, 1]]) >>> x = np.random.multivariate_normal(mean, cov, (3, 3)) >>> x.shape (3, 3, 2) The following is probably true, given that 0.6 is roughly twice the standard deviation: >>> list((x[0,0,:] - mean) < 0.6) [True, True] # random # Performs autobroadcasting when the batch shape of # `mean` and `cov` is different but compatible. >>> mean = np.zeros((3,2)) # shape (3, 2) >>> cov = np.array([[1, 0], [0, 100]]) # shape (2, 2) >>> x = np.random.multivariate_normal(mean, cov) >>> x array([[-1.6115597 , -8.726251 ], [ 2.2425299 , 2.8104177 ], [ 0.36229908, -8.386591 ]]) """ return _mx_nd_np.random.multivariate_normal(mean, cov, size=size, check_valid=None, tol=None) def choice(a, size=None, replace=True, p=None, ctx=None, out=None): r"""Generates a random sample from a given 1-D array Parameters ----------- a : 1-D array-like or int If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated as if a were np.arange(a) size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. replace : boolean, optional Whether the sample is with or without replacement p : 1-D array-like, optional The probabilities associated with each entry in a. If not given the sample assumes a uniform distribution over all entries in a. ctx : Context, optional Device context of output. Default is current context. Returns -------- samples : ndarray The generated random samples Examples --------- Generate a uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3) array([0, 3, 4]) >>> #This is equivalent to np.random.randint(0,5,3) Generate a non-uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) array([3, 3, 0]) Generate a uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False) array([3,1,0]) >>> #This is equivalent to np.random.permutation(np.arange(5))[:3] Generate a non-uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) array([2, 3, 0]) """ return _mx_nd_np.random.choice(a, size, replace, p, ctx, out) def rayleigh(scale=1.0, size=None, ctx=None, out=None): r"""Draw samples from a Rayleigh distribution. The :math:`\chi` and Weibull distributions are generalizations of the Rayleigh. Parameters ---------- scale : float, optional Scale, also equals the mode. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. ctx : Context, optional Device context of output, default is current context. out : ``ndarray``, optional Store output to an existing ``ndarray``. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Rayleigh distribution. """ return _mx_nd_np.random.rayleigh(scale, size, ctx, out)
[docs]def rand(*size, **kwargs): r"""Random values in a given shape. Create an array of the given shape and populate it with random samples from a uniform distribution over [0, 1). Parameters ---------- d0, d1, ..., dn : int, optional The dimensions of the returned array, should be all positive. If no argument is given a single Python float is returned. Returns ------- out : ndarray Random values. Examples -------- >>> np.random.rand(3,2) array([[ 0.14022471, 0.96360618], #random [ 0.37601032, 0.25528411], #random [ 0.49313049, 0.94909878]]) #random """ output_shape = () for s in size: output_shape += (s,) return _mx_nd_np.random.uniform(0, 1, size=output_shape, **kwargs)
def exponential(scale=1.0, size=None, ctx=None, out=None): r"""Draw samples from an exponential distribution. Parameters ---------- scale : float or array_like of floats The scale parameter, :math:`\beta = 1/\lambda`. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. ctx : Context, optional Device context of output, default is current context. out : ``ndarray``, optional Store output to an existing ``ndarray``. Returns ------- out : ndarray or scalar Drawn samples from the parameterized exponential distribution. """ return _mx_nd_np.random.exponential(scale, size=size, ctx=ctx, out=out) def weibull(a, size=None, ctx=None, out=None): r"""Draw samples from a 1-parameter Weibull distribution with given parameter a via inversion. Parameters ---------- a : float or array_like of floats Shape of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the 1-parameter Weibull distribution. Examples -------- >>> np.random.weibull(a=5) array(0.9553641) >>> np.random.weibull(a=5, size=[2,3]) array([[1.0466299 , 1.1320982 , 0.98415005], [1.1430776 , 0.9532727 , 1.1344457 ]]) >>> np.random.weibull(a=np.array([2,3]) array([0.98843634, 1.0125613 ]) The Weibull distribution is one of a class of Generalized Extreme Value (GEV) distributions. This class includes the Gumbel and Frechet distributions. The probability density for the Weibull distribution is f(x) = \frac{a}{\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a}, where a is the shape and \lambda the scale. The generated 1-parameter Weibull sample has the scale parameter \lambda = 1. The Weibull distribution is commonly used in reliability engineering to model time to failure, in modeling particle sizes, in information retrieval to model dwell time on pages, in quantitative finance to model risk etc. """ return _mx_nd_np.random.weibull(a, size=size, ctx=ctx, out=out) def pareto(a, size=None, ctx=None, out=None): r"""Draw samples from a Pareto II or Lomax distribution with specified shape a. Parameters ---------- a : float or array_like of floats Shape of the distribution. Must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the Pareto distribution. Examples -------- >>> np.random.pareto(a=5) array(0.12749612) >>> mx.numpy.random.pareto(a=5, size=[2,3]) array([[0.06933999, 0.0344373 , 0.10654891], [0.0311172 , 0.12911797, 0.03370714]]) >>> np.random.pareto(a=np.array([2,3]) array([0.26636696, 0.15685666]) The probability density for the Pareto distribution is f(x) = \frac{am^a}{x^{a+1}} where a is the shape and m the scale. Here m is assumed 1. The Pareto distribution is a power law distribution. Pareto created it to describe the wealth in the economy. """ return _mx_nd_np.random.pareto(a, size=size, ctx=ctx, out=out) def power(a, size=None): r"""Draw samples in [0, 1] from a power distribution with given parameter a. Parameters ---------- a : float or array_like of floats Shape of the distribution. Must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the power distribution. Examples -------- >>> np.random.power(a=5) array(0.8602478) >>> np.random.power(a=5, size=[2,3]) array([[0.988391 , 0.5153122 , 0.9383134 ], [0.9078098 , 0.87819266, 0.730635]]) >>> np.random.power(a=np.array([2,3]) array([0.7499419 , 0.88894516]) The probability density function is f(x; a) = ax^{a-1}, 0 \le x \le 1, a>0. The power distribution is just the inverse of the Pareto distribution and a special case of the Beta distribution. """ return _mx_nd_np.random.power(a, size) def shuffle(x): """ Modify a sequence in-place by shuffling its contents. This function only shuffles the array along the first axis of a multi-dimensional array. The order of sub-arrays is changed but their contents remain the same. Parameters ---------- x: ndarray The array or list to be shuffled. Returns ------- None Examples -------- >>> arr = np.arange(10) >>> np.random.shuffle(arr) >>> arr array([5., 1., 0., 6., 7., 3., 9., 8., 4., 2.]) # random Multi-dimensional arrays are only shuffled along the first axis: >>> arr = np.arange(9).reshape((3, 3)) >>> np.random.shuffle(arr) >>> arr array([[6., 7., 8.], # random [3., 4., 5.], [0., 1., 2.]]) """ _mx_nd_np.random.shuffle(x) def gamma(shape, scale=1.0, size=None, dtype=None, ctx=None, out=None): """Draw samples from a Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, `shape` (sometimes designated "k") and `scale` (sometimes designated "theta"), where both parameters are > 0. Parameters ---------- shape : float or array_like of floats The shape of the gamma distribution. Should be greater than zero. scale : float or array_like of floats, optional The scale of the gamma distribution. Should be greater than zero. Default is equal to 1. dtype : {'float16', 'float32', 'float64'}, optional Data type of output samples. Default is 'float32'. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn. ctx : Context, optional Device context of output. Default is current context. Returns ------- out : ndarray or scalar Drawn samples from the parameterized gamma distribution. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. """ return _mx_nd_np.random.gamma(shape, scale, size, dtype, ctx, out) def beta(a, b, size=None, dtype=None, ctx=None): r"""Draw samples from a Beta distribution. The Beta distribution is a special case of the Dirichlet distribution, and is related to the Gamma distribution. It has the probability distribution function .. math:: f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, where the normalisation, B, is the beta function, .. math:: B(\alpha, \beta) = \int_0^1 t^{\alpha - 1} (1 - t)^{\beta - 1} dt. It is often seen in Bayesian inference and order statistics. Parameters ---------- a : float or array_like of floats Alpha, positive (>0). b : float or array_like of floats Beta, positive (>0). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` and ``b`` are both scalars. Otherwise, ``np.broadcast(a, b).size`` samples are drawn. dtype : {'float16', 'float32', 'float64'}, optional Data type of output samples. Default is 'float32'. Dtype 'float32' or 'float64' is strongly recommended, since lower precision might lead to out of range issue. ctx : Context, optional Device context of output. Default is current context. Notes ------- To use this operator with scalars as input, please run ``npx.set_np()`` first. Returns ------- out : ndarray or scalar Drawn samples from the parameterized beta distribution. """ return _mx_nd_np.random.beta(a, b, size=size, dtype=dtype, ctx=ctx) def chisquare(df, size=None, dtype=None, ctx=None): r""" chisquare(df, size=None, dtype=None, ctx=None) Draw samples from a chi-square distribution. When `df` independent random variables, each with standard normal distributions (mean 0, variance 1), are squared and summed, the resulting distribution is chi-square (see Notes). This distribution is often used in hypothesis testing. Parameters ---------- df : float or ndarray of floats Number of degrees of freedom, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. dtype : {'float16', 'float32', 'float64'}, optional Data type of output samples. Default is 'float32'. ctx : Context, optional Device context of output. Default is current context. Returns ------- out : ndarray or scalar Drawn samples from the parameterized chi-square distribution. Raises ------ ValueError When `df` <= 0 or when an inappropriate `size` is given. Notes ----- The variable obtained by summing the squares of `df` independent, standard normally distributed random variables: .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i is chi-square distributed, denoted .. math:: Q \sim \chi^2_k. The probability density function of the chi-squared distribution is .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)} x^{k/2 - 1} e^{-x/2}, where :math:`\Gamma` is the gamma function, .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt. References ---------- .. [1] NIST "Engineering Statistics Handbook" https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm Examples -------- >>> np.random.chisquare(2,4) array([ 1.89920014, 9.00867716, 3.13710533, 5.62318272]) # random """ return _mx_nd_np.random.chisquare(df, size=size, dtype=dtype, ctx=ctx) def randn(*size, **kwargs): r"""Return a sample (or samples) from the "standard normal" distribution. If positive, int_like or int-convertible arguments are provided, `randn` generates an array of shape ``(d0, d1, ..., dn)``, filled with random floats sampled from a univariate "normal" (Gaussian) distribution of mean 0 and variance 1 (if any of the :math:`d_i` are floats, they are first converted to integers by truncation). A single float randomly sampled from the distribution is returned if no argument is provided. This is a convenience function. If you want an interface that takes a tuple as the first argument, use `numpy.random.standard_normal` instead. Parameters ---------- d0, d1, ..., dn : int, optional The dimensions of the returned array, should be all positive. If no argument is given a single Python float is returned. Returns ------- Z : ndarray A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from the standard normal distribution, or a single such float if no parameters were supplied. Notes ----- For random samples from :math:`N(\mu, \sigma^2)`, use: ``sigma * np.random.randn(...) + mu`` Examples -------- >>> np.random.randn() 2.1923875335537315 #random Two-by-four array of samples from N(3, 6.25): >>> 2.5 * np.random.randn(2, 4) + 3 array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], #random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) #random """ output_shape = () for s in size: output_shape += (s,) return _mx_nd_np.random.normal(0, 1, size=output_shape, **kwargs)