2.7. Documentação
Open the notebook in Colab
Open the notebook in Colab
Open the notebook in Colab
Open the notebook in SageMaker Studio Lab

Devido a restrições na extensão deste livro, não podemos apresentar todas as funções e classes do MXNet (e você provavelmente não gostaria que o fizéssemos). A documentação da API e os tutoriais e exemplos adicionais fornecem muita documentação além do livro. Nesta seção, fornecemos algumas orientações para explorar a API MXNet.

Devido a restrições na extensão deste livro, não podemos apresentar todas as funções e classes do PyTorch (e você provavelmente não gostaria que o fizéssemos). A documentação da API e os tutoriais e exemplos adicionais fornecem muita documentação além do livro. Nesta seção, fornecemos algumas orientações para explorar a API PyTorch.

Devido a restrições na extensão deste livro, não podemos apresentar todas as funções e classes do TensorFlow (e você provavelmente não gostaria que o fizéssemos). A documentação da API e os tutoriais e exemplos adicionais fornecem muita documentação além do livro. Nesta seção, fornecemos algumas orientações para explorar a API TensorFlow.

2.7.1. Encontrando Todas as Funções e Classes em um Módulo

Para saber quais funções e classes podem ser chamadas em um módulo, nós invoque a função dir. Por exemplo, podemos consultar todas as propriedades no módulo para gerar números aleatórios:

from mxnet import np

print(dir(np.random))
['__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__', '_mx_nd_np', 'beta', 'chisquare', 'choice', 'exponential', 'gamma', 'gumbel', 'logistic', 'lognormal', 'multinomial', 'multivariate_normal', 'normal', 'pareto', 'power', 'rand', 'randint', 'randn', 'rayleigh', 'shuffle', 'uniform', 'weibull']
import torch

print(dir(torch.distributions))
['AbsTransform', 'AffineTransform', 'Bernoulli', 'Beta', 'Binomial', 'CatTransform', 'Categorical', 'Cauchy', 'Chi2', 'ComposeTransform', 'ContinuousBernoulli', 'CorrCholeskyTransform', 'Dirichlet', 'Distribution', 'ExpTransform', 'Exponential', 'ExponentialFamily', 'FisherSnedecor', 'Gamma', 'Geometric', 'Gumbel', 'HalfCauchy', 'HalfNormal', 'Independent', 'IndependentTransform', 'Kumaraswamy', 'LKJCholesky', 'Laplace', 'LogNormal', 'LogisticNormal', 'LowRankMultivariateNormal', 'LowerCholeskyTransform', 'MixtureSameFamily', 'Multinomial', 'MultivariateNormal', 'NegativeBinomial', 'Normal', 'OneHotCategorical', 'OneHotCategoricalStraightThrough', 'Pareto', 'Poisson', 'PowerTransform', 'RelaxedBernoulli', 'RelaxedOneHotCategorical', 'ReshapeTransform', 'SigmoidTransform', 'SoftmaxTransform', 'StackTransform', 'StickBreakingTransform', 'StudentT', 'TanhTransform', 'Transform', 'TransformedDistribution', 'Uniform', 'VonMises', 'Weibull', '__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', 'bernoulli', 'beta', 'biject_to', 'binomial', 'categorical', 'cauchy', 'chi2', 'constraint_registry', 'constraints', 'continuous_bernoulli', 'dirichlet', 'distribution', 'exp_family', 'exponential', 'fishersnedecor', 'gamma', 'geometric', 'gumbel', 'half_cauchy', 'half_normal', 'identity_transform', 'independent', 'kl', 'kl_divergence', 'kumaraswamy', 'laplace', 'lkj_cholesky', 'log_normal', 'logistic_normal', 'lowrank_multivariate_normal', 'mixture_same_family', 'multinomial', 'multivariate_normal', 'negative_binomial', 'normal', 'one_hot_categorical', 'pareto', 'poisson', 'register_kl', 'relaxed_bernoulli', 'relaxed_categorical', 'studentT', 'transform_to', 'transformed_distribution', 'transforms', 'uniform', 'utils', 'von_mises', 'weibull']
import tensorflow as tf

print(dir(tf.random))
['Algorithm', 'Generator', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', '_sys', 'all_candidate_sampler', 'categorical', 'create_rng_state', 'experimental', 'fixed_unigram_candidate_sampler', 'gamma', 'get_global_generator', 'learned_unigram_candidate_sampler', 'log_uniform_candidate_sampler', 'normal', 'poisson', 'set_global_generator', 'set_seed', 'shuffle', 'stateless_binomial', 'stateless_categorical', 'stateless_gamma', 'stateless_normal', 'stateless_parameterized_truncated_normal', 'stateless_poisson', 'stateless_truncated_normal', 'stateless_uniform', 'truncated_normal', 'uniform', 'uniform_candidate_sampler']

Geralmente, podemos ignorar funções que começam e terminam com __ (objetos especiais em Python) ou funções que começam com um único _ (normalmente funções internas). Com base nos nomes de funções ou atributos restantes, podemos arriscar um palpite de que este módulo oferece vários métodos para gerar números aleatórios, incluindo amostragem da distribuição uniforme (uniforme), distribuição normal (normal) e distribuição multinomial (multinomial).

2.7.2. Buscando o Uso de Funções e Classes Específicas

Para obter instruções mais específicas sobre como usar uma determinada função ou classe, podemos invocar a função help. Como um exemplo, vamos explorar as instruções de uso para a função ones dos tensores.

help(np.ones)
Help on function ones in module mxnet.numpy:

ones(shape, dtype=<class 'numpy.float32'>, order='C', ctx=None)
    Return a new array of given shape and type, filled with ones.
    This function currently only supports storing multi-dimensional data
    in row-major (C-style).

    Parameters
    ----------
    shape : int or tuple of int
        The shape of the empty array.
    dtype : str or numpy.dtype, optional
        An optional value type. Default is numpy.float32. Note that this
        behavior is different from NumPy's ones function where float64
        is the default value, because float32 is considered as the default
        data type in deep learning.
    order : {'C'}, optional, default: 'C'
        How to store multi-dimensional data in memory, currently only row-major
        (C-style) is supported.
    ctx : Context, optional
        An optional device context (default is the current default context).

    Returns
    -------
    out : ndarray
        Array of ones with the given shape, dtype, and ctx.

    Examples
    --------
    >>> np.ones(5)
    array([1., 1., 1., 1., 1.])

    >>> np.ones((5,), dtype=int)
    array([1, 1, 1, 1, 1], dtype=int64)

    >>> np.ones((2, 1))
    array([[1.],
           [1.]])

    >>> s = (2,2)
    >>> np.ones(s)
    array([[1., 1.],
           [1., 1.]])
help(torch.ones)
Help on built-in function ones:

ones(...)
    ones(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor

    Returns a tensor filled with the scalar value 1, with the shape defined
    by the variable argument size.

    Args:
        size (int...): a sequence of integers defining the shape of the output tensor.
            Can be a variable number of arguments or a collection like a list or tuple.

    Keyword arguments:
        out (Tensor, optional): the output tensor.
        dtype (torch.dtype, optional): the desired data type of returned tensor.
            Default: if None, uses a global default (see torch.set_default_tensor_type()).
        layout (torch.layout, optional): the desired layout of returned Tensor.
            Default: torch.strided.
        device (torch.device, optional): the desired device of returned tensor.
            Default: if None, uses the current device for the default tensor type
            (see torch.set_default_tensor_type()). device will be the CPU
            for CPU tensor types and the current CUDA device for CUDA tensor types.
        requires_grad (bool, optional): If autograd should record operations on the
            returned tensor. Default: False.

    Example::

        >>> torch.ones(2, 3)
        tensor([[ 1.,  1.,  1.],
                [ 1.,  1.,  1.]])

        >>> torch.ones(5)
        tensor([ 1.,  1.,  1.,  1.,  1.])
help(tf.ones)
Help on function ones in module tensorflow.python.ops.array_ops:

ones(shape, dtype=tf.float32, name=None)
    Creates a tensor with all elements set to one (1).

    See also tf.ones_like, tf.zeros, tf.fill, tf.eye.

    This operation returns a tensor of type dtype with shape shape and
    all elements set to one.

    >>> tf.ones([3, 4], tf.int32)
    <tf.Tensor: shape=(3, 4), dtype=int32, numpy=
    array([[1, 1, 1, 1],
           [1, 1, 1, 1],
           [1, 1, 1, 1]], dtype=int32)>

    Args:
      shape: A list of integers, a tuple of integers, or
        a 1-D Tensor of type int32.
      dtype: Optional DType of an element in the resulting Tensor. Default is
        tf.float32.
      name: Optional string. A name for the operation.

    Returns:
      A Tensor with all elements set to one (1).

A partir da documentação, podemos ver que a função ones cria um novo tensor com a forma especificada e define todos os elementos com o valor de 1. Sempre que possível, você deve executar um teste rápido para confirmar seu interpretação:

np.ones(4)
array([1., 1., 1., 1.])
torch.ones(4)
tensor([1., 1., 1., 1.])
tf.ones(4)
<tf.Tensor: shape=(4,), dtype=float32, numpy=array([1., 1., 1., 1.], dtype=float32)>

No bloco de notas Jupyter, podemos usar ? para exibir o documento em outra janela. Por exemplo, list? criará conteúdo que é quase idêntico a help(list), exibindo-o em um novo navegador janela. Além disso, se usarmos dois pontos de interrogação, como list??, o código Python que implementa a função também será exibido.

2.7.3. Sumário

  • A documentação oficial fornece muitas descrições e exemplos que vão além deste livro.

  • Podemos consultar a documentação para o uso de uma API chamando as funções dir ehelp, ou ? E ?? em blocos de notas Jupyter.

2.7.4. Exercícios

  1. Procure a documentação de qualquer função ou classe na estrutura de Deep Learning. Você também pode encontrar a documentação no site oficial do framework?